(English translation at the end)
Poids et gravité
Avant de vous faire part de ma dernière idée farfelue, voici un tableau qui montre le poids qu'un individu aurait sur les astres de notre système solaire si ce poids est de 50 kg sur la Terre. Il varierait de 1 400 kg à 3 kg, selon que vous seriez sur le Soleil ou sur Pluton.Poids et gravité
Afin de mieux vous montrer à quel point le poids d'un individu peut varier dans l'univers, dans le tableau suivant vous voyez que la variation est considérable. J'ai même ajouté le poids prédit si l'individu se tenait sur un ballon dans un coin reculé de l'espace. Autrement, si l'individu ne se trouve pas sur un autre objet, quel est son poids véritable? D'abord, a-t-il un poids?
Tout objet
a un poids bien à lui, nonobstant l’endroit où il se situe. Par contre, le même
objet sur différentes planètes aura un poids différent. N’est-ce pas
contradictoire? En fait, ce n’est pas son poids comme tel qui est différent,
mais la force qu’exerce la gravité sur lui. Donc, à un certain égard, le poids
est relatif et non absolu.
Tous les
objets ont une gravité différente. En général, un objet de plus grande taille
dégagera une gravité supérieure à un objet de plus petite taille. Mais, ce
n’est pas toujours la règle. La gravité dépend avant tout de la nature des
objets. Un objet qui tiendrait dans la main pourrait avoir une gravité de
millions de kilogrammes : il ne tiendrait pas longtemps dans la main....
On pourrait
croire que je jongle avec les mots, des mots qui ne changent pas la réalité.
Chaque objet de l’univers possède son poids généré par sa masse atomique. Une
locomotive est lourde sur la Terre. Elle pourrait peser presque rien sur une
planète légère, disons faite de gomme à mâcher. Elle pourrait être des milliers
de fois plus lourde sur une planète dense dont la masse atomique est
considérable. Combien pèse une locomotive, alors? Lequel de ces poids est son
vrai poids?
La distinction entre poids et gravité (force gravitationnelle, force d’attraction) est
difficile à maîtriser. Comment un individu peut-il peser à la fois 50 kg sur
Terre et 19 kg sur Mercure? L’individu reste pourtant le même.
Une idée
farfelue
Je viens de
montrer que la gravité entre deux objets est un phénomène de « relativité ». La
force de la gravité dépend de la nature des deux objets en relation. La gravité
entre deux objets représente la somme de leurs gravités. Donc, la gravité est
cumulative entre des objets, nonobstant leur gravité individuelle. La gravité
de l’un n’annule pas la gravité de l’autre : une notion essentielle.
La gravité
dépasse aussi l’objet : elle s’étend en dehors de l’objet et diminue avec
la distance.
La gravité
voyage à la vitesse de la lumière.
NOTE: Une année-lumière équivaut à 9 460 730 472 580,8 km.
La gravité
est constante, en autant que la masse atomique est constante. Une planète qui
s’éteint voit sa gravité diminuer.
J’assume
que le Trou noir d’une galaxie ne génère pas de gravité : une croyance
personnelle. Pas de masse atomique, pas de gravité. Un trou, ce n’est pas une
masse, un objet. La structure d’une galaxie serait plutôt maintenue par la
gravité cumulative des étoiles (systèmes solaires). Ces étoiles, elles,
possèdent une masse atomique. Si une galaxie se compose de 100 milliards
d’étoiles, c’est la gravité cumulée de ces étoiles qui maintient la galaxie en
opération. La gravité près du Trou peut être importante, astronomique, mais pas
dans le Trou noir.
Comment un
système solaire à la périphérie de la galaxie, à une distance de 50 000
années-lumière du Trou noir, peut-il rester accroché à la galaxie sans
s’éloigner et se perdre dans l’espace? Nous assumons qu’il conserve sa
trajectoire grâce à la gravité. Mieux encore, il pivote à la même vitesse
qu’un système solaire tout près du Trou noir. Comment est-ce possible? Voici
mon hypothèse, ou plutôt, mon idée farfelue à ce sujet.
Les
milliards d’étoiles de la galaxie conservent leur position respective parce que
chacune d’elle attire les autres en même temps que les autres l’attirent. Les
forces d’attraction autour d’une étoile sont d’égale puissance. Par conséquent,
ces forces s’annulent, permettant à chaque étoile de maintenir sa position. C'est ce qui permettrait à la galaxie de tourner sur elle-même et aux étoiles de conserver leur position respective dans la galaxie.
Pourquoi une galaxie tourne-t-elle sur elle-même? L’explication de ce
phénomène est similaire à l’eau qui s’écoule de votre évier : de la
matière sous pression pivote. La tornade est un autre exemple de ce phénomène
connu. Le Trou noir est un broyeur qui finira par avaler la galaxie. Le Trou noir serait apparu après la formation de la galaxie, et non avant.
La sempiternelle question
Comment un
système solaire à des milliards de kilomètres du centre d’une galaxie est-il
retenu à la périphérie où la gravité ne peut être importante? Si elle n’est pas
importante, elle est tout de même suffisante: les étoiles sont retenues par la gravité. Alors, comment peut-elle être
suffisante si ce système solaire représente un poids énorme? Revenons à notre
exemple du début.
Mon idée
farfelue stipule que ce système solaire, donc tous les systèmes solaires (étoiles) de la
galaxie, n’aurait qu’un poids relatif et non absolu. Comment une force faible
comme la gravité peut-elle retenir des milliards d’étoiles à des milliards de
kilomètres, à moins que ces étoiles ne pèsent à peu près rien et que leur poids
soit relatif et non absolu. Un objet d’un milliard de kg ne peut être retenu
sur une trajectoire à la périphérie d'une galaxie avec la force de gravité que nous connaissons: difficile à croire...
Plutôt que
de croire que les objets de l’univers ont un poids relatif, on préfère croire
qu’il existe une force qui retient l’univers dans sa forme et dans son fonctionnement
actuel. On parle ainsi de matière et d’énergie noire, soit quelque chose que
l’on n’est pas parvenu à détecter encore à ce jour.
Ça ne me
semble pas suffisant de répondre à une question en disant : « Je ne sais
pas ». Qui ne s'interroge pas, ne cherche pas et ne trouve donc pas!
In order to show you how much the weight of an individual can vary in the universe, in the following table you see that the variation is considerable. I even added the predicted weight if the individual was standing on a balloon in a remote corner of space. Otherwise, if the individual is not on another object, what is his true weight? First, does it have a weight?
Every object has a weight of its own, notwithstanding where it is located. On the other hand, the same object on different planets will have a different weight. Is not this contradictory? In fact, it is not his weight as such that is different, but the force that gravity exerts on him. So, in one respect, the weight is relative and not absolute.
All objects have different gravity. In general, a larger object will have a greater gravity than a smaller object. But, that's not always the rule. Gravity depends primarily on the nature of the objects. An object that would hold in the hand could have a gravity of millions of kilograms: it would not hold long in the hand ....
One might think I'm juggling words, words that do not change reality. Every object in the universe has its weight generated by its atomic mass. A locomotive is heavy on the Earth. It could weigh almost anything on a light planet, say made of chewing gum. It could be thousands of times heavier on a dense planet whose atomic mass is considerable. How much does a locomotive weigh, then? Which of these weights is his true weight?
The distinction between weight and gravity (gravitational force, force of attraction) is difficult to control. How can an individual weigh both 50 kg on Earth and 19 kg on Mercury? The individual remains the same, however.
Gravity also exceeds the object: it extends outside the object and decreases with distance.
Gravity travels at the speed of light.
Gravity is constant, as long as the atomic mass is constant. A planet that goes out has its gravity diminish.
I assume that the black hole of a galaxy does not generate gravity: a personal belief. No atomic mass, no gravity. A hole is not a mass, an object. The structure of a galaxy would rather be maintained by the cumulative gravity of the stars (solar systems). These stars have an atomic mass. If a galaxy consists of 100 billion stars, it is the cumulative gravity of these stars that keeps the galaxy in operation. Gravity near the Hole can be important, astronomical, but not in the Black Hole.
How can a solar system on the periphery of the galaxy, at a distance of 50,000 light-years from the Black Hole, remain attached to the galaxy without moving away and getting lost in space? We assume that he keeps his trajectory thanks to gravity. Better yet, it rotates at the same speed as a solar system near the Black Hole. How is it possible? Here is my hypothesis, or rather, my wacky idea about it.
The billions of stars in the galaxy maintain their respective positions because each of them attracts others at the same time as others attract it. The forces of attraction around a star are of equal power. As a result, these forces cancel each other out, allowing each star to maintain its position. This would allow the galaxy to spin on itself and the stars to maintain their respective positions in the galaxy.
Why does a galaxy turn on itself? The explanation for this is similar to the water flowing from your sink: pressurized material rotates. The tornado is another example of this known phenomenon. The Black Hole is a crusher that will eventually swallow the galaxy. The Black Hole would have appeared after the formation of the galaxy, not before.
My wacky idea states that this solar system, so all the solar systems (stars) of the galaxy, would have a relative weight and not absolute. How can a weak force like gravity hold billions of stars billions of miles away, unless these stars weigh almost nothing and their weight is relative and not absolute. An object of a billion kg can not be held on a trajectory on the periphery of a galaxy with the force of gravity that we know: hard to believe ...
Rather than believing that the objects of the universe have a relative weight, we prefer to believe that there is a force that holds the universe in its current form and functioning. We are talking about matter and dark energy, something that we have not managed to detect yet.
It does not seem to me sufficient to answer a question by saying, "I do not know." Who does not question, does not seek and therefore does not find!
Weight and gravity
Before I tell you my latest crazy idea, here is a table that shows the weight that an individual would have on the stars of our solar system if this weight is 50 kg on the Earth. It would vary from 1,400 kg to 3 kg, depending on whether you are on the Sun or Pluto.In order to show you how much the weight of an individual can vary in the universe, in the following table you see that the variation is considerable. I even added the predicted weight if the individual was standing on a balloon in a remote corner of space. Otherwise, if the individual is not on another object, what is his true weight? First, does it have a weight?
Every object has a weight of its own, notwithstanding where it is located. On the other hand, the same object on different planets will have a different weight. Is not this contradictory? In fact, it is not his weight as such that is different, but the force that gravity exerts on him. So, in one respect, the weight is relative and not absolute.
All objects have different gravity. In general, a larger object will have a greater gravity than a smaller object. But, that's not always the rule. Gravity depends primarily on the nature of the objects. An object that would hold in the hand could have a gravity of millions of kilograms: it would not hold long in the hand ....
One might think I'm juggling words, words that do not change reality. Every object in the universe has its weight generated by its atomic mass. A locomotive is heavy on the Earth. It could weigh almost anything on a light planet, say made of chewing gum. It could be thousands of times heavier on a dense planet whose atomic mass is considerable. How much does a locomotive weigh, then? Which of these weights is his true weight?
The distinction between weight and gravity (gravitational force, force of attraction) is difficult to control. How can an individual weigh both 50 kg on Earth and 19 kg on Mercury? The individual remains the same, however.
A wacky idea
I have just shown that the gravity between two objects is a phenomenon of "relativity". The force of gravity depends on the nature of the two objects in relation. The gravity between two objects represents the sum of their gravities. So gravity is cumulative between objects, notwithstanding their individual severity. The gravity of one does not negate the gravity of the other: an essential notion.Gravity also exceeds the object: it extends outside the object and decreases with distance.
Gravity travels at the speed of light.
Gravity is constant, as long as the atomic mass is constant. A planet that goes out has its gravity diminish.
I assume that the black hole of a galaxy does not generate gravity: a personal belief. No atomic mass, no gravity. A hole is not a mass, an object. The structure of a galaxy would rather be maintained by the cumulative gravity of the stars (solar systems). These stars have an atomic mass. If a galaxy consists of 100 billion stars, it is the cumulative gravity of these stars that keeps the galaxy in operation. Gravity near the Hole can be important, astronomical, but not in the Black Hole.
How can a solar system on the periphery of the galaxy, at a distance of 50,000 light-years from the Black Hole, remain attached to the galaxy without moving away and getting lost in space? We assume that he keeps his trajectory thanks to gravity. Better yet, it rotates at the same speed as a solar system near the Black Hole. How is it possible? Here is my hypothesis, or rather, my wacky idea about it.
The billions of stars in the galaxy maintain their respective positions because each of them attracts others at the same time as others attract it. The forces of attraction around a star are of equal power. As a result, these forces cancel each other out, allowing each star to maintain its position. This would allow the galaxy to spin on itself and the stars to maintain their respective positions in the galaxy.
Why does a galaxy turn on itself? The explanation for this is similar to the water flowing from your sink: pressurized material rotates. The tornado is another example of this known phenomenon. The Black Hole is a crusher that will eventually swallow the galaxy. The Black Hole would have appeared after the formation of the galaxy, not before.
The eternal question
How is a solar system billions of kilometers from the center of a galaxy retained on the periphery where gravity can not be important? If it is not important, it is still sufficient: the stars are held by gravity. So how can it be sufficient if this solar system is a huge burden? Let's go back to our example from the beginning.My wacky idea states that this solar system, so all the solar systems (stars) of the galaxy, would have a relative weight and not absolute. How can a weak force like gravity hold billions of stars billions of miles away, unless these stars weigh almost nothing and their weight is relative and not absolute. An object of a billion kg can not be held on a trajectory on the periphery of a galaxy with the force of gravity that we know: hard to believe ...
Rather than believing that the objects of the universe have a relative weight, we prefer to believe that there is a force that holds the universe in its current form and functioning. We are talking about matter and dark energy, something that we have not managed to detect yet.
It does not seem to me sufficient to answer a question by saying, "I do not know." Who does not question, does not seek and therefore does not find!
Aucun commentaire:
Publier un commentaire